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Gauge-invariant time-dependent perturbation theory: 
1. Non-degenerate case 

Kuo-Ho Yangt 
Department of Physics and Astronomy, University of Maryland, College Park, Md 20742, 
USA and 
Theoretical Chemistry Institute, University of Wisconsin, Madison, Wi 53706, USA 

Received 15 May 1981, in final form 3 November 1981 

Abstract. A manifestly gauge-invariant time-dependent perturbation theory is developed 
for a non-degenerate quantum mechanical system interacting with an arbitrary classical 
electromagnetic radiation field. The first- and second-order net transition rates are derived 
and compared with their conventional counterparts. It is found that the conventional and 
the gauge-invariant perturbative rates of transition agree completely. 

1. Introduction 

In a previous paper (Yang 1982), we have shown that the conventional interpretation of 
the quantum mechanical probability amplitudes and probabilities is gauge dependent 
and, when applied to the relativistic (Dirac) and the non-relativistic quantum 
mechanics, can not be consistent with the Foldy-Wouthuysen transformations (Foldy 
and Wouthuysen 1950). We have also shown that these two difficulties are not present 
in a gauge-invariant formulation proposed previously (Yang 1976, Kobe and Smirl 
1978, Leubner and Zoller 1980) that incorporates Poynting’s theorem and the conser- 
vation law of energy (Jackson 1975) into the definition of probability amplitudes. 

The above findings are true for the exact probability amplitudes and probabilities. 
They thus raise an important question as to how some approximate solutions from these 
two formulations will compare with each other. In this series of papers, we shall address 
ourselves to the perturbative results that are the most familiar and commonly used 
approximate solutions to the Schrodinger equation. 

In this paper we shall concentrate on a non-degenerate system and develop a 
manifestly gauge-invariant time-dependent perturbation theory for such a system.$ 
The formulation to be developed here will serve as the basis for our later treatment of a 
more complicated system. Throughout this paper, we shall assume that the 
‘unperturbed’ Hamiltonian has a non-degenerate spectrum. In addition, we also 
assume that the magnetic field involved is not strong enough to cause a breakdown of 
the Rayleigh-Schrodinger time-independent perturbation theory (RSTIPT) (e.g. 
Messiah 1966) in solving for the eigenvalues and eigenfunctions of the gauge-invariant 
energy operator HB. 

t Present address: Theoretical Chemistry Institute, University of Wisconsin, Madison, Wi 53706, USA. 
t A brief account of this paper can be found in Yang (1981). 
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This paper contains six sections. In 9 2 we shall briefly review the gauge-invariant 
formulation and the physical concepts involved. In § 3, we first solve for the eigenvalues 
and eigenfunctions of the energy operator HE by the RSTIPT and then apply these results 
to formulate a time-dependent perturbation theory (TDPT). Here, we shall also 
describe a procedure for evaluating the transition matrix elements and prove the 
manifest gauge invariance of these transition matrix elements through the second order. 

In 0 4  we use a single-frequency external field to obtain the first-order and 
second-order perturbative rates of transitions. Here, we also make the extra effort to 
use this simple field to demonstrate that, despite our choice of the arbitrary potentials, 
the transition matrix elements depend explicitly only on the fields. In 0 5 ,  we briefly 
compare our first- and second-order net transition rates with their conventional 
counterparts and find complete agreement between these rates of transitions. Finally, a 
brief discussion is presented in § 6. 

2. The gauge-invariant formulation 

In this section we shall briefly review the gauge-invariant formulation of a quantised 
particle interacting with a classical external electromagnetic field. For a more complete 
description of the theory, see Yang (1976) and Kobe and Smirl(l978). A very detailed 
discussion of the concept of gauge invariance in both classical and quantum mechanics 
can be found in Cohen-Tannoudji et a1 (1977). Some simple applications of this 
formulation to gauge-related problems have been made by Yang (1976), Kobe and 
Smirl (1978) and, more recently, Leubner and Zoller (1980). 

Let us consider a non-relativistic, spinless particle with mass m and charge e 
interacting with a conservative, electrostatic field Eo(rJ = -V Vo(r) and a time-varying 
electromagnetic radiation field E(r, t )  and B(r, t ) .  If we use the potentials A(r, t )  and 
@(r, t )  in an arbitrary gauge to represent E(r, t )  and B(r, t ) ,  then 

E = -va- ( i / c )  aA/at, B = V x A .  (2.1) 

In this gauge, the Hamiltonian and the Schrodinger equation are 

H = (p-eA/c)* /2m+eVo+e@,  

ifilk(r, t )  = H P ( ~ ,  t ) ,  

where @ = a q / a t .  
The central idea of the gauge-invariant formulation is to construct, for the Hamil- 

tonian in (2.2), the energy operator Hs representing the particle’s energy that conserves 
with the radiation field energy and its flux. Then we use the eigenfunctions of HE and 
the wavefunction to define the probability amplitudes (Yang 1976, 1982, Kobe and 
Smirl 1978, Leubner and Zoller 1980). According to Poynting’s theorem and the 
conservation law of energy (Jackson 1975, equations (6.110) and (6.111), Yang 1982, 
9 6) and the correspondence principle (Bohr 1928), the operator HE is determined, if 
we neglect the self-interaction, by 

(dHB/dt)H = i ( J ’ E + E  * J ) = P ( t ) ,  (2.4) 

where 

(dHB/dt)H = aHB/af + [HB, H ] / i h  i2.5) 
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and P(t)  will be referred to as the power operator throughout this paper. The symbol J 
in (2.4) is the current operator associated with the Hamiltonian in (2.2) and hence is eu 
where U = [r, H]/ih = (p - eA/c ) /m.  If we use H in (2.2) and this expression of J in 
(2.4) and (2.5), we find 

(2.6) 

Let us use {Ej@)} and {Yj(r, t)} to denote the eigenvalues and the orthonormal and 

HB ( t )  = (P - e A / ~ ) ~ / 2  m + e v0 = 5" + e vo, 
which is just the sum of the Newtonian kinetic energy and the potential energy. 

complete (assumed) set of eigenfunctions of H B ( f ) .  That is 

HB(f)*j(rs t )  = Ej(tWj(r, t ) ,  W j  I *\I) = Sjk .  (2.7) 

Note, the time dependence in Ej(f) and q j ( r ,  t) is solely determined by the time 
dependence in A(r, t). However, the {Ej}  reduce to the time-independent spectrum of 
Ho = p 2 / 2 m  +eVo if V X  A = 0 since now A = Vx and HB = RHOR+ where R = 
exp(iex/c h) . 

We then expand the wavefunction Y(r,  t) in the basis of {Yj(r, t)} with the expansion 
coefficients {aj(t)}, 

(2.8) 

and interpret {aj(t)}  as probability amplitudes. These probability amplitudes satisfy the 
differential equation 

W r ,  t )  = C aj(t)yj(r,  t ) ,  aj(t) = (*j(t) I W t ) ) ,  
i 

ihuj =Ejaj+C ak(Yjl (ea-ih a / a t ) l Y k ) ,  (2.9) 
k 

where uj = daj(t)/dt. It can be shown that ah Ej and (Yjl(e@-ih a/at)lYk> are gauge 
invariant for all j and k and at all times (Yang 1976, Kobe and Smirl 1978). Hence, 
equation (2.9) is manifestly gauge invariant. 

The energy spectrum {Ej(t)} will in general be time dependent if there is a 
time-dependent magnetic field. For a periodic external field with period 7, we define the 
mean energy spectrum { E ~ }  by 

ej = (1/7) lTdfEj(f) .  
0 

(2.10) 

The physical meaning of the transition matrix elements in equation (2.9) has been 
investigated in detail before (Yang 1976, Kobe and Smirl 1978). If we differentiate 
both sides of the eigenvalue equation (2.7) with respect to time, then 

(HB -&)(a*k/af)  = (& - aHB/at)Wk, 

[HB, e a ]  = - $ i h { ~  (Val + (Val J }  

(2.11) 

where E& is the time derivative of Ek. From this and the commutator relation 

(2.12) 

where J = eu, we get 

(Ej -Ek)(*jl(ea-ih a/at))Yk) = -ih(EkSjk -(Yj/PIYk)), (2.13) 
where P has been defined in (2.4). 

From (2.13), we obtain 

gj(t) = (*jIP(t)I*j), (2.14) 
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and for E, # Ek, 

(Vjl(e@-ih a/at))Yk> = ih(YjlPJYk)/(Ej (2.15) 

The expression in (2.15) indicates that the power operator P governs the transitions 
between states of different energies. This is consistent with the physical meaning of 
Poynting’s theorem in the classical electromagnetic theory since it is the power density 
that determines the energy exchange between the radiation field and the charged 
particle (Jackson 1975, equations (6.110) and (6.111); Yang 1982, P 6). 

In the remaining portion of this paper, we will develop a time-dependent pertur- 
bation theory for equation (2.9). Because the transition matrix elements in this 
equation involve the eigenfunctions of HE instead of the eigenfunctions of the 
unperturbed Hamiltonian as in the conventional TDPT, we must first solve for Ej and Ti 
perturbatively. For this purpose, we will need the usual RSTIPT, in which the time is 
treated as a parameter. In the RSTIPT, a degenerate system is treated differently from a 
non-degenerate one (e.g. Messiah 1966). In this paper, we shall concentrate on the 
non-degenerate case. Once the perturbative solutions of Ej and ylj are obtained, we 
obtain our TDPT simply by substituting these perturbative solutions for Ei and Y j  into 
(2.9), as shown in the next section. 

3. Gauge-invaripat time-dependent perturbation theory 

Our purpose in this section is to develop a perturbative treatment to solve (2.9). The 
TDPT to be formulated here is the Rayleigh-Schrodinger type of perturbation theory, 
whose solutions can be readily compared with the results from the conventional TDPT. 
The arrangement of this section is as follows. First, we use the Rayleigh-Schradinger 
time-independent perturbation theory to solve for the eigenvalues and eigenfunctions 
of (2.7). We then use these solutions in (2.9) to obtain a TDPT. After this is done, a 
procedure for obtaining the gauge-invariant transition matrix elements will be 
described and their gauge invariance will be shown through the second order. 

3.1. The Rayleigh-Schrodinger procedure 

According to the RSTIPT (e.g. Messiah 1966), we decompose H E  in (2.6) as 

HE =Ha+ V1-k v2; 

(3.1) 

where HO =p2/2m + eVo is the usual ‘unperturbed’ Hamiltonian. If we substitute (3.1) 
and the expansions 

Vl = -e@ A + A  - p)/2mc, Vz = (eA)’/2mc2, 

(3.3) 

(3.4) 

(3.5) 
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and so on. The normalisation required here is 

In particular (Langhoff et a1 1972), 

n 

m -0 
(yj” I y F - m ) )  E 0 for all n 3 1. (3.7) 

As discussed in the Appendix, consideration of gauge transformations requires that 
(qj Iqj l ) )  should not be chosen to vanish. Our particular choices of the values of 
(rpj IYi”)) for n = 1, and 2, are discussed in the Appendix. 

From equations (3.4), (3.5) and so on, it can be shown (e.g. Yang 1977) that the 
eigenvalue corrections E?’ are (i) independent of the values of {(qjlYy))}, and (ii) 
gauge invariant for all j and to all orders. The proofs of these two properties of the 
RSTIFT are straightforward, as the reader can verify for himself. 

3.2. Time-dependent perturbation theory 

If we substitute the expansions in (3.2) and 

aj(t) = 1 bi”’(t) exp (-bit) 
n 

into equation (2.9), and then regroup terms of the same order, we get the basic 
differential equations for the TDPT: 

ihbj’’ = E  bio’Mj:’ exp (iujkt), 

ifid:’’ = 

k 

{b$.’)M$) + b$.”M$’} exp(iojkt), 
k 

and so on. Here, bf”) = dbj”’/dt, Wjk = Wj -6&, and 

(3.10) 

(3.11) 

(3.12) 

where, denoting a*Ir(km’/at by @$, 
tim) = eQqim-1) - ih+im), mal. (3.13) 

Because equations (3.9)-(3.11) are identical in form to the differential equations in 
the conventional TDFT (e.g. Merzbacher 1961), the usual way of computing the rates of 
transition can be immediately applied once the transition matrix elements are known. 
Because these transition matrix elements are defined in a complicated fashion as shown 
in (3.12) and (3.13), we will first establish a procedure to evaluate them in the next 
subsection. Finally, we note that the wavefunction *(r, t ) ,  when expressed in terms of 
{by’} and {Yy)}, is 

(3.14) 
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In actual numerical computations of the solutions of the TDPT, one only works with 
one set of potentials, usually the most convenient one for a particular field situation. It 
is therefore important first to establish the gauge invariance of all the quantities 
constructed from our procedure in the TDPT. Only after the gauge invariance is 
established can we be sure that the results obtained depend only on the prescribed fields 
and not on the particular potentials used. (When gauge invariance is not strictly 
maintained, the fields corresponding to the potentials used in the calculations may differ 
from the actual fields for a given physical situation. This interesting point has been 
recently investigated in detail by Leubner and Zoller (1980) and Leubner (1981).) 
Thus, let us first prove the gauge invariance of M$) before attempting to derive the 
expressions for the transition rates from (3.9)-(3.11). 

3.4. Gauge invariance of {Mlkn)} 

The proof of gauge invariance of the transition matrix elements (M~;’}consists in 
proving that 

(3.25) 

Here, A’ and a’ are arbitrary potentials describing the fields E and B in (2.1); they are 
therefore related to A and @ by the relation (Al) in the Appendix. As we explicitly 
illustrated in (3.25), Mi;) (A’, W )  are obtained by replacing A and 4) in Mckn) (A, a) by 
A’ and W. That is, the relation (3.25) requires that the matrix elements {M!;’} have the 
same forms and same values in all gauges, which is often referred to as manifest gauge 
invariance. (For a discussion of the concept of manifest gauge invariance, see Yang 
(1976), Cohen-Tannoudji et a1 (1977), Kobe and Smirl (1978), Leubner and Zoller 
(1980), Kobe and Yang (1980) and Leubner (1981)) For convenience of notation we 
shall use M$” for M;;) (A’, a’). 

Since the proof of (3.25) requires consideration of potentials and power operators in 
the gauge of (A‘, a’), let us first construct in this new gauge the power operator P’ 
according to (2.4) and the first- and second-order power operators P”’) and P”’) 
according to (3.15) and (3.16). If we use Vi = -e(A‘ * p + p  *A’ ) /2mc  and Vi  = 
(eA‘)’/2mc2, then 

P ’ =  ( e / 2 m ) ( ( p - e A ’ / c ) . E + E . ( p - e A f / c ) } ,  (3.26) 
P”’)=av;/at+[Ho, e ~ ] / i ~ = e ( p  . E + E  *p)/2m =P), (3.27) 

P””=aV;/3t+[V;, e@’]/ih=-e’E * A ’ / m c  =Pc2’-e2E .Vx/mc.  (3.28) 

That (3.25) is true for n = 1 can be seen as follows. According to (3.3), the 
zeroth-order eigenfunctions { c p j }  are determined only by the ‘unperturbed’ Hamiltonian 
Ho. Hence, if we use {W$‘”} for the zeroth-order eigenfunctions in the gauge of (A’, a’), 
Y$“) = 9y’ = qfi (For a degenerate case, the arguments leading to 9;“’ = 9 F )  are 
different.) Thus, (3.25) is true simply by (3.20) and (3.27) for j  f k and by (3.21) and the 
gauge invariance of E:” for j = k .  (From (3.19), one can also deduce the gauge 
invariance of EL’’ since &’) is gauge invariant.) 

The proof of (3.25) for n = 2 is more involved. Let us prove it here only for j # k. 
According to (3.24), MiL’) is 

Mi;) (A’, a’) = Mj;) (A,  a) for all j and k and all n 2 1. 

M;L2) = (i/Wjk){( cpj p’(1)19;1)) + ( 9 $ ( 1 ) p ’ ( 1 ) l c p k )  + (cpj IP””lcpk) 

- (i/hu:k)(E;(’) -E:”)(cpjlP’(’)lcpk), (3.29) 
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where the primed quantities are obtained in (A', a') in exactly the same manner as the 
unprimed quantities in (A, @). If we use the choice of (qjl*~')) as described in the 
Appendix and solve for q;'), and do similarly for W;"), then it can be shown that 

Finally, if we use the gauge invariance of {E;!)}, P'(l) = P") and (3.30) into (3.29), it can 
be shown from (3.24) and (3.29) that 

Finally, we mention that the gauge invariance of all higher-order transition matrix 
elements can be shown similarly by first choosing (qj I Yy)) to satisfy (A7). 

In the next section, we will also use a single-frequency field to illustrate explicitly 
what we have proven here in terms of abstract symbols. 

4. Perturbative rates of transitions 

In this section, we shall apply the TDPT developed in fi 3 to derive the first- and 
second-order net transition rates for a single-frequency external field. In order to 
illustrate explicitly the gauge invariance of the TDPT, we will specify only the fields and 
leave the expressions for the potentials to be arbitrary within the extent that they 
generate the specified fields. We shall show that our expressions for MI;), although they 
are initially defined in terms of both potentials and fields, will eventually reduce to 
quantities that are explicitly expressed only in terms of fields. By doing this, we once 
again demonstrate that the TDPT formulated here does have the ability to eliminate the 
uncertainty in the construction of potentials from fields. 

Because of the explicit demonstration of the gauge-invariance property, some 
procedures in § 3 will be repeated here. Although this repetition may look superfluous 
on the surface, it is essential for a deeper understanding of the basic properties of both 
the exact and the time-dependent perturbation theories of the gauge-invariant formu- 
lation. 

4.1. Specification of fields and notation 

Let us now assume a single-frequency field with angular frequency w : 

and similarly for B(r, t), where * denotes the complex conjugate. 
Since we have shown that the transition matrix elements M $ )  are manifestly gauge 

invariant, we may choose any arbitrary set of potentials to describe this field situation. 
For the purpose of demonstration, let us choose A and (0 to have the forms: 

A(r, t )  = A+(r)  eiw' +A-@) e-iwf, A+ = (A-)*,  

@+ = (@-)*. 

(4.2) 

(4.3) @(r, t )  = @ + ( r )  eiWt + c ~ - ( r )  e-'"', 
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Here, A, and @, are left to be arbitrary except that they must combine to generate the 
correct fields, 

E,  = -V@, T (io/c)A,, A, = r (c/iw)(E, +V@,), (4.4) 

and @,(O) = 0 as required in the Appendix. 
According to (3.19)-(3.21) and (3.24), Mi:’ is linear in E and M::’ is bilinear in the 

combination of E and A. Let us now decompose them according to their frequency 
dependence. 

M$) ( t )  = M$;+ eiof + M;:!- e-iwt, 

~ j : ’  ( t )  = eZiwf + M;&, + M $ ! - ~  e-2iwf. (4.6) 

(4.5) 

All other relevant operators, eigenvalue corrections, and perturbative eigenfunctions 
will be similarly decomposed according to their dependence on the potentials and/or 
fields. For example, 

P P  = e @  E, + E, p)/2m, (4.7) 

(4.9) 

P f i  = -e2E, AJmc = fifi * (e2/imo)E, V@*, $54 = *(eE,)’/miw, (4.8) 

v ~ , ,  = -e@ A,+A, p)/2mc = *(1/io)P2) * ( I / A ~ ) [ H ~ ,  e@*]; 

(ie/ch)F[A,] = *(l/ho)F[-eE*]r (l/ho)(e@,), (4.10) 

where F has been defined in (All) .  

4.2. Net transition rates 

If we substitute (4.5) and (4.6) into (3.10) and (3.11), the first-order net transition rates 
for the single-frequency excitation and de-excitation in which the particle makes a 
transition from the initial state i to the final state f are 

(4.11) 

Similarly, the net transition rates for the double-frequency excitation and de-excitation 
are 

T& = (2r/h2)IN& l2S(oti*20), (4.12) 

T(1) (1) 2 
ti,+ (2r/h2)I~ti ,* I S(oti*u). 

where 

(4.13) 

From (3.20) and (4.7), we get 

= (i/on>(cptle@ 9 E, + E ,  p)/2ml~i). . (4.14) 

Note, according to (4.14) and (3.27), the first-order power operators in all gauges 
involve explicitly only the electric field. Hence, the question of whether different sets of 
potentials lead to different forms of the first-order power operators, and hence different 
first-order transition matrix elements, does not arise here. In order to demonstrate this 
point more clearly, let us put the potentials in (4.2) and (4.3) into (3.1), (3.4), (3.13) and 
(3.14) to evaluate Mi:’ directly without going through the procedure described in 8 3.3. 
Since f # i, Mi:’ = (qt1@). From (3.1) and (3.4), 

(4.15) (VtI @’)) = -(l/fioti)HcptI Vl,+lVi) eiof + (Vtl V1,-lpi) e+?, 
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where Vl,* are defined in (4.9). From (3.13) and (4.15), and using the fact that qf(r )  is 
time-independent, it follows that 

(qt15!”) = ( l / ~ f i ) { ( ~ t l ( w t i e c o + - w V ~ , + ) l ~ i )  ei”‘ +(qrl(wtie@- +wVl,-)lqi) e-’”‘). (4.16) 

Furthermore, 

(qflwfieQ*Iqi) = (e/h)(cpfl[Ho, @ * I l ~ i >  

= (e/2mi)(qfl(p V@* +v@* a p)/qi). (4.17) 

If we now use (4.4), (4.7), Vl,+ in (4.9), (4.16) and (4.17), it is trivially shown that 

(qrl(wfie@*iwVl,*)lqi)=i(qrle(p * E*+E* * p)/2mlqi), 

which agrees exactly with the results obtained in 0 3.3. 
The first-order transition matrix elements in (4.14) have an interesting form under 

the dipole approximation E&) -E,(O) for transitions involving bound states. If we 
use this approximation for the field and the relation p/m = [r, Ho]/ih, then 

~ i i %  (ie/oti)E*(O) (cprlp/mlqi> = (qfl-er * E+(O)lqi) .  (4.18) 

The procedure involved in demonstrating that the second-order transition matrix 
elements M&, which are initially defined in terms of potentials as can be seen from 
(3.24), can also be explicitly expressed in terms of fields only, is more involved as we 
shall show in the following subsection. 

4.3. The second-order transition amplitudes N& 

To demonstrate that Mit’t2 can be explicitly expressed in fields only by starting from the 
potentials in (4.2) and (4.3), let us first list some useful relations that can be derived by 
using the procedure in § 3.1 and definitions in § 4.1. In the following, k # i, and 

( ( ~ k  I *$) = F(l/ihwwki)P!‘ii 

(qi/Yrj,’2) = * ~ ! , 2 / h w  ~ ( l / h ~ ) ( q i l e a * , l q i ) ,  

PU.ii = ( ( ~ k  IP!“ [Vi). 

(l/hu)(qk I e@tIqi)t 

and Py,if = (*iw)Eg,y. Thus, if we use Z[ to denote the summation that excludes k = i 
and f, then it can be shown that 

{(vflP(1)l*:1))L2 

= ~ ( 1  /ihw) 1’‘ { ~ $ , \ k  (1 /wki)Pz,)ki} 7 (1 /hw)(qtjP2’ (ea*)Iqi> 
k 

+ P2.L {vj,Y/ ( * f iw)  - ~ : , 2 /  (fiwfi)). (4.19) 

Using a similar procedure, we get 
(1) (1) (1) (1) {(vf  IP Ipi>)*tz = Wf.*P* Id 

= *(l/ihw) 1’’ { P Z , ; ~  (1/ufk)P2,iiI * (l/Aw)(qfI(ealt)PU’ (Vi> 
k 

+ P:$ {-qi:l/ (*hw> +.El,2/hufi). (4.20) 

The two terms involving e @ ,  in (4.19) and (4.20) are the only gauge-dependent terms in 
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these two expressions. The operators of these two terms combine to give 

(l/hw){(eQ*)PF -Pf)(e@*)} = (e/hw)[Q*,  P P I  = r(e’/miw)E, V@,. (4.21) 

If we combine this result with the PCz) term in (3.24) and then use (4.8), the gauge- 
dependent terms in M& disappear since 

(4.22) 

From (3.24) and (4.19)-(4.22), we obtain A4& only in terms of gauge-invariant 

(cpfl{(l/hw)(e@*PP -PPeQ,) +~(~)}lcpi) = fiZi,fi, 
where the operators fiFi are defined in (4.8). 

quantities: 

M i i f L Z  = f(h/wwfi)-’ 1” {Pc,ikPz,)&i(l/6Jfk - l/wki)} 
k 

+ (i/wfi)P$i{(-q!!i + q!,2)/(*hw)-2(E!!2 -E,!,Y)/hwfi} 

+ (i/wfi)PFi,fi. (4.23) 

Thus, we have demonstrated that despite our deliberate choice of the arbitrary 
potentials in (4.2) and (4.3), A4& depend only on the fields. (Let us note that the 
gauge invariance of {E?’} implies that they are determined only by the magnetic field. 
This is because if V x A = 0, then it can be shown that E:”) = 0 for all j and all n 1 (e.g. 
Yang 1977).) 

Finally, from (3.20), (3.21), (4.13) and (4.23), and after a very lengthy algebraic 
procedure, we get the expression for NiifLz as follows. 
“2) - -1 (1) 

fi,*2 - c” P!1ik[fi(Twfi/2)(@ki* U)] P*.ki 
k 

(4.24) 

where 

2 -1 (1) A(2) - I f  -1 (1) 
fi,*Z P~,~k[hwwfiwfk(Wki*W)] P*,k i  f (ihwfi) P,,fi{El!i/(wfi*w>-El,~/(*w)} 

k 

(4.25) 

This ends our investigation of the first- and second-order perturbative rates of 
transitions. Higher-order rates can be obtained by the same procedure, although it will 
be very tedious. In the following section, we shall compare our results with the 
conventional results. 

-1 (1) (1) + [ihUfi(*w)(wfi* &)I P*,fivf,*- 

5. Comparison with the conventional results 

In this section, we shall compare the rates of transition derived in the previous section 
with those derived from the conventional time-dependent perturbation theory. We will 
see that for the first- and second-order transition rates, the gauge-invariant and 
conventional results agree exactly. After the comparison, we will mention one charac- 
teristic difference between these two formulations in the approximate wavefunctions. 

In the conventional formulation, the wavefunction Y(r, t) is expanded in the basis 
set of eigenfunctions of the ‘unperturbed’ Hamiltonian, resulting in the expansion 
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coefficients { ci ( t )} : 

W, t )  = cj(c)pi(r) exp(-iwjt), (5.1) 

where Awj and p j ( r )  are respectively an eigenvalue and the associated eigenfunction of 
the 'unperturbed' Hamiltonian. If we write 

i 

C j ( t )  = c l " ' ( t )  
n 

then these coefficients {c?'(t)} satisfy equations (3.9)-(3.11) with Mi:), n = 1 and 2, 
replaced by the matrix elements p1 and V2 in the basis functions {pj(r)}. Here, and 
P2 are 

(5.2) 

where we have chosen the gauge for the fields in (4.1) to be (the conventional choice of 
the radiation gauge (e.g. Sakurai 1967)) 

Q1= -e@ * A +A p)/2mc, Q2 = (eA)'/2mc2, 

A(r, t )  =A+(r) eiw* +A-(r) e-"', & = O .  (5.3) 

~ , ( r )  = T(iw/c)A*(r) or A,(r) = T(c/io)E,(r). (5.4) 

(5 .5 )  

Since this set of potentials is to generate the fields in (4.1), it follows that 

Hence, 
* '(2) 

Ql,* = *(I/im)k!', VZ,*Z = ~(i/2w)P,z, 

where P z )  and $z$ are defined in (4.7) and (4.8). 
The conventional single- and double-frequency rates of transitions are 

f'Ll,L = ( 2 ? r / ~ ~ ) I p l , , : t i 1 ~ ~ ( w f i * ~ ) ,  (5.6) 

(5.7) f'C2) - 
f1.*2 - (2v/h2)1fiI:k2 12S(wfi* 2 ~ ) 9  

f i r i f ! tZ  = -E {pl,*;fk[h(wki*w)]-l v-l,*:ki}+ Q2.12;fi 

where Pl,*;fi = (rpfl pl,*ICpi> and 

(5.8) 
k 

where L 2 ; f i  = (cpd p2,*2I~i)* 

From (3.20) and (5.4), it is obvious that 

~ i i ' . k  = r(&/wfi> Q1,a;fi. (5.9) 

Furthermore, if we use Pl.*iii = Ei.2 and (5.4), then it can be shown that 
fi& = C " ~ ~ , & [ f i w ~ ( w k i * w ) ]  -1 ~ * - , k i  (1) +(Ti@) -1 ~ i , i i { ~ i ~ ~ / [ h ( o f i * w ) I + ~ f , ~ / ( * h w ) }  (1) 

k 

+ [i/(~2w)-jE$;f~ (5.10) 

where the double prime in the summation means excluding k = i and f. Comparing (5.7) 
with (4.24), we see that 

(5.11) 

Because of the presence of S(ofirtnw), n = 1 and 2, in the expressions for the net 
transition rates in (4.11), (4.12), (5.5) and (5.6), we see that the conventional and the 
gauge-invariant perfurbatiue net transition rates agree completely. 

Ni& = F ( ~ W / W ~ , ) G ~ ~ ~ Z  + (wfif2~)A:ifL~. 
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Let us now discuss one important characteristic difference in the approximate 
wavefunctions obtained from these two formulations. Assume that we have a first- 
order absorption with wfi = w. The only dominant coefficients are clo’(f) and cl!? ( t )  in 
the conventional formulation and are bI0’ (t) and bif’ (t) in the gauge-invariant formu- 
lation. Since equation (3.9) is satisfied by both cfO’(t)  and b,!”(t), let us set c!”(t)= 
blo’(t) = 1 without loss of generality. Because w is exactly equal to ofi, we have 

According to (5.1), the conventional formulation will give the dominant terms of the 
b:;L ( t )  = dl.? (t) .  

wavefunction as 

W, t )  = cpi(r) exp(-ioit) + ci!L (t)cpt(r) exp(-iwrt). (5.12) 

On the other hand, the approximate wavefunction from the gauge-invariant formula- 
tion is, according to (3.14), 

m 
*(r, t )  = exp(-ioit) 

m 

m = l  
+ bi.2 ( t )  exp(-iwft)( cpf(r) + 9 jm) ( r ,  t ) ) .  (5.13) 

Thus, despite the fact that $2 (t) is identical to bi:?(t), the two approximate wavefunc- 
tions are different. 

6. Discussions 

The fact that the conventional interpretation of the quantum mechanical probability 
amplitudes and probabilities is gauge dependent has long been suspected by Lamb 
(1952) and Power and Zienau (1959) through their investigations of approximate 
solutions to the time-dependent Schrodinger equation (with decay constants added 
phenomenologically). Their suspicion is recently confirmed by the theoretical investi- 
gations of the exact probability amplitudes and probabilities by this author (Yang 1976, 
1982), Kobe and Smirl(1978), Kobe and Wen (1980) and Leubner and Zoller (1980). It 
can also be (indirectly) understood from a very detailed examination of the gauge 
dependence of the conventional interaction Hamiltonians and their matrix elements in 
the basis set of eigenfunctions of the ‘unperturbed’ Hamiltonian recently given by 
Power (1978) and Power and Thirunamachandran (1978). But, the simplest way to 
understand this subject on a fundamental level is the discussion of Cohen-Tannoudji et 
a1 (1977) on the subject of true physical and non-physical quantities. One very 
important result of their discussion is that p 2 / 2 m  in general represents a non-physical 
quantity. 

In contrast, our formulation as briefly described in 8 2 is manifestly gauge invariant 
and consistent with the Foldy-Wouthuysen transformations when applied to the 
relativistic (Dirac) and non-relativistic quantum mechanics (Yang 1982). 

Because of the above, it is important to compare some approximate results from 
these two different formulations. Here, we have chosen the perturbative results for the 
obvious reason that they are the most often-used approximate results to compare with 
experiment. We have seen that the first- and second-order net transition rates 
computed from the conventional and the gauge-invariant TDPT’S agree completely. 
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The comparison of these two perturbative rates of transition has two important 
implications. First, we now understand that the conventional perturbathe rates of 
transition are indeed gauge invariant despite the fact that the exact formulation is gauge 
dependent. Second, we also learn that the gauge-invariant formulation can reproduce 
some conventional results under some approximations. The latter is important in 
practice since it is the conventional perturbative results that have been tested against 
experiment. 

Although the first- and second-order transition rates from these two formulations 
agree, in general the transition probability amplitudes and transition probabilities do 
not. This is especially true when the transition amplitudes can be evaluated exactly. It 
is precisely because of this difference in the conventional and the gauge-invariant 
transition amplitudes that the gauge-invariant formulation can resolve some apparent 
gauge-related paradoxes in the interpretation of quantum mechanics, as explained in 
detail recently by Leubner and Zoller (1980). 
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Appendix. Normalisation of perturbative eigenfunctions 

In this Appendix, we will briefly discuss a simple method of choosing the values of 
8;”’ = (cp j  I *in)), n L 1, to satisfy (3.7) and the required properties under gauge trans- 
formations. For this purpose, we must also consider a different gauge with potentials A’ 
and Q,’ that are related to A and Q, in (2.1) by an arbitrary gauge function x(r, t) by 

A’=A+Vx,  Q,‘ = Q, - (l/c) ax/at. (All  

In this new gauge, the Hamiltonian H’, the energy operator HL, and the interaction 
operators V i  and V5 to be used in the Rayleigh-Schrodinger time-independent 
perturbation theory are: 

H’=(p-eA‘ /c ) ’ /2m+eV0+e@’ ,  (A21 

(A3) HL = (p -eA’lc)’/2m + eVo = Ho+ Vi + V ; ,  

Vi = -e(A’ p +p A’)/Zmc, Vh = (eA’)’/2mc2. (A41 

HL = exp(A)& exp(-A), A = iex/cft. (A51 

where Ho = p2/2m + eVo, and 

The operators HB in (3.1) and H(B in (A3) are related by 

If we use {*;(r, t)} to denote the exact eigenfunctions of HL, then (A5) implies that they 
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are related to the eigenfunctions {Yj(r, t)} of HB by 

P;(r, t )  = exp(A)Yj(r, t). (A6) 
Let us now use 9;"') to denote the nth-order eigenfunction correction of jth state 

obtained by the RSTIPT. In order that these {q;'")} have the correct behaviour under 
gauge transformation, they must be related to { q y ) }  in (3.2)-(3.7) by the perturbative 
equivalent of (A6), which takes the form 

n 

q;'") = (Am/m ! )yl lnPm) or q y ) =  1 [(-h)"/m!]Y~"'. (A71 
m =O m =O 

If we set n = 1, take the projection onto qj, and denote (qj IY;")) by a;"), then 

~ j ' "  -ai1) = (ie/ch)(cpilX(r, t)lpj>. (AS) 
As is clear from (A8), the usual intermediate normalisation (qj IY\yl")) = 0 for all n 2 1 
(e.g. Messiah 1966) must not be used for all gauges. 

Before we discuss the detail of how to 'solve' (A8), let us first set up a uniform 
standard. From now on, we shall require that all scalarpotentials vanish at the origin at 
all times. If the scalar potential in (A, @) does not satisfy this requirement, we simply do 
the substitution: @(r, t )+@(r ,  t ) - @ ( O ,  t). As is clear from (2.1) and (2.9), such a 
requirement affects neither the exact or approximate fields nor the transition matrix 
elements between different states. (It simply shifts the phases of all aj ( t )  by the same 
amount.) Once the scalar potentials are required to have this behaviour, we may 
further assume that all gauge functions X ( r ,  t )  vanish at the origin at all times. 

We now wish to solve (A8) in the form: 

(qjlx(r, t)lqjpi> = (cpilF[A'Ilqj>-((pilF[AIl~jPi), (A91 
where F[A'] is a function of A' only. Note that the right-hand side requires that the two 
terms be obtained in an identical manner. To find F, we use the condition that 
~ ( 0 ,  t) = 0 to write 

X(r, t )  = jords Vx(s, t) = ds [A'(s, t)-A(s, t)] 1 
along any path from 0 to r since V x (A' -A) = 0. 

The simplest way of casting (A10) into the form of (A9) is to use one existing 
technique associated with the multipolar gauge (e.g. Power and Zienau 1959, Fiutak 
1963, Woolley 1975) and to choose s = ur  with 0 s U s 1. Thus, we 'solve' (A9) by 

1 

F[A] = du r A(ur, t). (A1 1) 

Sl" = (ie/ch)(qjlFIA]lqj). (A121 

(PjIeQIcpi) +(qjI-ih aqj"/at) = (cpiI~[-e~~Iqj), 

0 

With this choice, Si" ist 

Using this definition of F, we can also show that 

(-413) 
which will appear in the time-dependent perturbation theory in 0 3. Note, F[-eE] 

t One would prefer having a procedure that can uniquely determine SF) .  However, in the absence of such a 
procedure, one resorts to a choice. 
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agrees exactly with the scalar potential in the multipolar gauge. Finally, we note that 
87’ is purely imaginary so that (3.7) for n = 1 is satisfied. 

Let us briefly describe how to ‘solve’ for Sjz’ that will satisfy (3.7) for TZ = 2. From 
(A7), we get two results: 

a;(*) --ay) = ( ~ i ~ ~ ~ ~ ~ l ) ) + ~ ( q j ~ ~ z ! q j ) ,  (A14) 

ay) - a;(’) = -(qjl~lq;(l)) + $ ( q j l ~ 2 ) ( p , ) .  (A151 
From these two results, we get 

- 812) = ${ (q j l~p~) )  + ( q j l ~ l * ; ( l ) ) } .  (A161 
This relation can eventually be manipulated into a form (with the help of the relation 
Yr;“) = q y )  + Apj and (A9)) so that one can ‘solve’ for ay’ with the explicit expression: 

(A17) 
We will stop here as the procedure for deriving the higher order 6:“’ will be exceedingly 
complicated, although the basic idea is the same. 

6 7 )  = -$(Yrj”I *;I)) + (ie/2ch)((qjlF[A]I*~”) + (*~”lF[A]l(~i)}. 
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